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ABSTRACT In the presence of certain macromolecules, such as fibrinogen, immunoglobulin, dextran, and polylysine,
erythrocytes tend to aggregate and form cylindrical clusters called “rouleaux” in which cells resemble coins in a stack.
The aggregates may remain cylindrical or they may branch, forming tree, and networklike structures. Using the law of
mass action and notions from polymer chemistry, we derive expressions describing the kinetics of the early phase of
aggregation. Our models generalize work initiated by Ponder in 1927 who used the Smoluchowski equation to predict
the concentration of rouleaux of different sizes. There are two novel features to our generalization. First, we allow
erythrocytes that collide near the end of a stack of cells to move to the end of the cylinder and elongate it. Second, we
incorporate geometric information into our models and describe the kinetics of branched rouleau formation. From our
models we can predict the concentration of rouleaux with » cells and b branches, the mean number of cells per rouleau,
the mean number of branches per rouleau, and the average length of a branch. Comparisons are made with the

available experimental data.

I. INTRODUCTION

Erythrocytes that are normally monodisperse tend to
aggregate in the presence of certain macromolecules. The
aggregates that form may be completely irregular, with
the erythrocytes in the cluster having arbitrary orientation
with respect to one another, as seen in the hemagglutina-
tion reaction used to type blood (cf. Thygesen, 1942), or
the aggregates may be long cylindrical objects called
“rouleaux,” in which cells adhere face to face and resem-
ble coins in a stack. Large rouleaux are commonly
branched. Examples of both linear and branched rouleaux
are shown in Fig. 1. Because rouleaux form in human
blood they have been the object of intensive study for over
200 years (see Fahraeus, 1921, and Thygesen, 1942, for
historical reviews). The adhesion responsible for the
ordered aggregation seen in rouleau formation is thought
to be mediated by intercellular bridges formed by macro-
molecules simultaneously adsorbed on opposing faces of
the adherent cells (Jan, 1979a; Chien, 1980, 1981). The
tendency to form rouleaux and the shape of the rouleaux
formed reflect the membrane mechanics of the red cell,
and depend upon the strength of binding between the cells
(Chien et al., 1978). At extremely high adhesive energies
disordered aggregates form rather than rouleaux (Chien,
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1981). As might be expected, the degree of erythrocyte
aggregation is a function of the type and concentration of
the macromolecules used (Merrill et al., 1969), of the
shear rate in the suspending fluid (Usami et al., 1975), of
temperature (Dintenfass and Forbes, 1973), of ionic
strength (Jan and Chien, 1973b), and of the charge on the
red cells (Jan and Chien, 1973a). Although many of the
considerations we raise in this paper apply to the disor-
dered aggregates formed by agglutination reactions, we
shall restrict our attention to rouleaux.

While rouleau formation is interesting as a model
system for the study of cellular adhesion and aggregation,
it is also physiologically significant in microcirculatory
hemodynamics. Aggregation in vivo usually involves fi-
brinogen (Chien et al., 1967) or serum globulins (Dinten-
fass and Somer, 1975). Rouleaux are sensitive to the flow
regime of the fluid in which they are suspended (Usami et
al., 1975). At high shear rates, rouleaux are rapidly broken
up, and red cells are monodisperse. In the absence of shear,
red cells collide only rarely, so aggregation proceeds very
slowly. Low shear rates induce red cell aggregation,
presumably by increasing the collision frequency without
inducing sufficient mechanical forces to disaggregate the
cells. Largely as a result of rouleau formation, the viscosity
of blood increases as the rate of shear decreases (Whit-
more, 1968; Chien et al., 1973). Blood shows thixotropy
(Huang et al., 1975) and, at low shear rates, viscoelasticity
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FIGURE 1 Typical rouleaux. Fresh blood from a healthy individual, anticoagulated with EDTA, was centrifuged and resuspended in its own
plasma at a hematocrit of 1%. A drop of the resulting suspension was placed on a microscope slide, covered with a glass cover slip, and

photographed with phase contrast optics.

(Chien et al., 1975). The “anomalous viscosity” of blood is
apt to be most significant in the microcirculation, and is
generally attributed to the formation of rouleaux and to
the ability of red cells to deform (Fung, 1981).

Erythrocyte aggregation is used clinically as an index of
the concentration of macromolecules in the blood plasma.
The erythrocyte sedimentation rate, a measure of red cell
aggregation, is elevated in several diseases including multi-
ple myeloma, many infections, macroglobulinemias, some
malignancies, and diabetes mellitus (cf. Reich, 1978).
Intravascular aggregation can lead to a slowing of micro-
vascular blood flow, resulting in localized hypoxia and
acidosis (Dintenfass, 1976). In patients with diabetes
mellitus, increased aggregation may play a role in the
pathogenesis of vascular derangements and diabetic reti-
nopathy (Dintenfass, 1977).

The adhesive aspects of rouleau formation have been
examined in model systems using dextrans (Brooks and
Seaman, 1973) and polylysines (Katchalsky et al., 1959)
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with various molecular weights. The macromolecular
bridging hypothesis reviewed by Chien (1980, 1981), is
supported by the electron microscopic observation that the
distance between adherent cell surfaces increases directly
with the length of the bridging macromolecule (Kat-
chalsky et al., 1959; Chien and Jan, 1973). Dextran-
induced aggregation is inhibited by urea, and therefore is
probably due to hydrogen bonding between the dextran
and the cell surface (Jan, 19795b). Fluid mechanical tech-
niques have been used to show that the adherence of red
cells in a rouleau is reversible: two partially separated red
cells move back together when an applied shear stress is
removed (Chien et al., 1977); high shear rates break up
even the largest of rouleaux (Usami et al., 1975).

A theoretical picture of the adhesion process in rouleau
formation is emerging. Negatively charged red cells repel
one another electrostatically, but may be bridged by
macromolecules. If the energy of cell adhesion due to the
adsorption of macromolecules is greater than the electro-
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static repulsive energy, adhesion is favored (Chien, 1975).
There may be some contribution to the net energy per unit
area due to short range van der Waals forces, but their
influence does not seem to be dominant (Jan, 19795).
After initial contact between the cells (due to random or
shear-induced collisions), the contact area increases until
the adhesive force is balanced by the force of membrane
elasticity (Skalak et al., 1977).

The clinical consequences of rouleau formation are
correlated with the effects of the aggregate on the micro-
circulation. These in turn are directly related to the size
and shape of the rouleau. Our goal in this paper is to
develop a mathematical model for the kinetics of rouleau
formation that will allow us to predict the number of cells
in a rouleau and the degree of branching in its structure.
Our work is a generalization of a model proposed by
Ponder (1927). Ponder treated rouleau formation as an
irreversible linear polycondensation reaction, adapting the
solution of the Smoluchowski equation of coagulation
kinetics to the problem of rouleau formation. However,
Ponder dismissed the problem of branching of rouleaux
under the assumption that branches are inherently unsta-
ble structures which do not effect the aggregates ulti-
mately seen. Although this may be true to some extent, we
shall see that branching can have important effects on the
kinetics of rouleau formation. Branched rouleaux, even if
constantly being formed and degraded, would be expected
to play a predominant role in microcirculatory dynamics.
Hydrodynamic aspects of rouleau formation will not be
dealt with here, although we note that Adler (1979) has
attempted to predict the size of a rouleau in a sedimenta-
tion field on this basis. The equilibrium distribution of
rouleau sizes has been studied by Perelson and Wiegel
(1982). Here we restrict our attention to the early phases
of rouleau formation in which reactions can be thought of
as being irreversible.

In modeling rouleau formation as a polymerization
reaction we shall implicitly make various assumptions
about the physical processes leading to collisions among
red cells and red cell aggregates. To each reaction we
assign a rate constant, k. Although we shall treat these
rate constants as “constants,” their values will depend on
the physical variables that characterize an experiment,
e.g., the temperature and viscosity of suspending medium,
the concentration and type of bridging macromolecule,
and the detailed fluid flows set up in the experimental
apparatus. In polymerization reactions molecules are
usually brought together by Brownian motion. Stirring
and other external fluid motions induced in the medium
have a neglible effect compared with diffusion in bringing
two particles together when their radius is <0.05 um
(Purcell, 1978). For particles as large as red cells the
opposite is true. Brownian motion can be ignored, and
sedimentation and fluid motion become the predominant
forces influencing particle collisions. Although these forces
are not isotropic, we shall assume-that one can find an
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appropriate average rate constant which is the same at all
positions within the volume. Furthermore, we initially
assume k to be independent of particle size, although in
section III we introduce rate constants that are propor-
tional to rouleau surface area. At later stages in modeling
one can develop more refined methods of choosing k. For
example, theories of aggregation in shear fields are
discussed by Bell (1981), Richardson (1973), Swift and
Friedlander (1964), and Levich (1962). Jones and Perry
(1979) describe a theory for the aggregation of cells in
turbulent flow fields based upon work of Saffman and
Turner (1956). The geometry and frequency of two-body
collisions has been studied in dilute suspensions of spheres
and disks undergoing Couette and Poiseuille flow in both
Newtonian (Goldsmith and Mason, 1967) and non-
Newtonian media (Gauthier et al., 1971a, b). Utilizing
these theories alone will prove incomplete in modeling of
rouleau formation. For though fluid flow affects the rate of
aggregation, the presence of aggregates in turn influences
the fluid flow. For example, at low rates of shear, blood
flow obeys the Casson equation (Fung, 1981; Cokelet et
al., 1963). This non-Newtonian behavior is felt to reflect
red cell aggregation, among other processes. There is to
our knowledge no complete theory of aggregation and
fluid flow that can predict collision rates between growing
aggregates in a changing fluid environment. As theoretical
results become available, more refined assumptions
regarding the values of k can be made. In this paper our
major focus shall be on formulating the correct kinetic
equations to describe the aggregation process, assuming
appropriate rate constants can be found from some other
theory. Here we shall assume that k is a constant whose
value is to be determined for each particular experimental
situation.

In section II we describe Ponder’s work and our general-
izations for predicting the number of cells in a rouleau. In
section III we consider the effects of geometry and develop
a model for the formation of branched rouleaux. A discus-
sion of our results follows in section IV.

II. NUMBER OF CELLS IN A ROULEAU

Theories of Polymerization

The basic ideas developed in polymer chemistry for
describing the formation of large polymeric molecules can
be applied to many types of aggregation processes. For
example, Smoluchowski’s theory of the coalescence of
liquid droplets (Smoluchowski, 1916, 1917) is formally
equivalent to a special case of the theory of condensation
polymerization (cf. Ziff, 1980). Here we shall illustrate
how to describe the kinetics of rouleau formation using the
theories of addition and condensation polymerization.
Ponder (1927) initiated this approach by applying the
Smoluchowski equation to irreversible rouleau formation.
Chang and Robertson (1976) used this method for
studying platelet aggregation and more recently Ryan et
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al. (1980) used it to analyze the dextran-induced aggrega-
tion of bacteria.

A rouleau containing n red cells will be referred to as an
n-mer. There are two classes of reactions that we shall
consider: addition reactions

n-mer + l-mer — (n + 1)-mer,
and condensation reactions
n-mer + i-mer — (n + i)-mer.

Addition polymerization reactions involve the sequential
addition of monomer to growing polymer chains, whereas
condensation reactions allow polymer chains of all sizes to
interact.

In rouleau formation both mechanisms may be opera-
tive, single cells can add to growing rouleaux, and two
rouleaux may collide and form a larger rouleau. Because
single cells are more mobile than rouleaux, we first exam-
ine the consequences of a pure addition model and later
examine more realistic models that incorporate both addi-
tion and condensation. Also, to simplify our development,
we treat all reactions as if they were irreversible. Thus our
models will only be valid for times that are short compared
with the time needed to establish equilibrium. In a later
paper we shall incorporate the kinetics of dissociative
processes, and study the long time behavior of red cell
aggregation phenomena.

Application of Addition Polymerization to
Rouleau Formation

If single red cells add to the ends of growing rouleaux,
addition polymerization may be considered as a model for
rouleau formation. Rouleaux are initiated when two
erythrocytes collide and adhere. Since individual red cells
may have different properties than rouleaux with regard to
their membrane mechanics and collision rate, we allow
two different rate constants: k., the rate constant for the
reaction between two erythrocytes, and k,, the rate
constant for addition of an erythrocyte to a rouleau. We
denote the concentration of free erythrocytes at time ¢ by
E(?), and the concentration of rouleaux with n cells by
R(n, t). At t = 0, we assume the erythrocyte concentration
is E; and no rouleaux are present. Let

R(t) = Y R(n,1) (1)

be the total concentration of rouleaux at time ¢, irrespec-
tive of size.

Elongation of existing rouleaux conserves the number of
rouleaux, so R(¢) is affected only by the production or
destruction of new two-cell rouleaux. If erythrocytes
collide at random then the square of their concentration is
proportional to their collision frequency. Therefore,
neglecting dissociation, we can write
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dR/dt = ' k. E?, (2)
with the initial condition
R{0)=0. 3)

We have included a statistical factor of !4 in the erythro-
cyte-erythrocyte reaction rate since identical particles are
interacting. It arises because the relative rate of collisions
between particles labeled A, B, C, etc. is proportional to
A% 2AB, B?, 2AC, etc.; i.e., identical particles collide with
half the frequency of distinguishable particles (Tanford,
1961, p. 589). This factor can be included in the rate
constant k., but for reasons of consistency which will
become apparent later we have decided not to make this
simplification.

Two erythrocytes are lost by each occurrence of the
initiation reaction, and one disappears by each collision
with an existent rouleau. Hence,

dE/dt = — k.E* - k,ER, (4)
with initial condition
E (0) = E,. (5)

We can also write an equation for the rate of change of
any individual species of rouleau

dR (2)/dt = k.E* — k,ER (2), (6)
and
dR (n)/dt = k,E [R (n — 1) — R(n)],
n=3,4... (7

In the addition mechanism, n-cell rouleaux are formed by
the collision of an erythrocyte with an (n—1)-cell rouleau,
and disappear when an erythrocyte adds to an n-cell
rouleau to form an (n + 1)-cell rouleau. In Egs. 6 and 7,
for simplicity, we have abbreviated R(n, t) to R(n). To
denote the initial condition we include the time depen-
dence. Thus, the initial conditions for Egs. 6 and 7 are

R (n,0) =0, n=273.... (8)

In Fig. 2 we show the results of numerically integrating
the equations for this addition polymerization model. Our
results are plotted in terms of the following nondimen-
sional variables:

E'=E/E;,, R R/E,, R(n)=
R(n)/Ey, t = tk,E,, (92)
and a nondimensional rate constant
ko= k./k,. (9b)

From Fig. 2 we can see the following general trends: free
erythrocytes, E, decrease monotonically, whereas total
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R’ (n)

rouleaux constantly increase. Initially, the predominant
rouleaux are dimers. Although we expect & to be of order
1, we have explored a reasonably wide parameter range in
our simulations. When k. » 1 (Fig. 2 a) erythrocyte-
erythrocyte collisions occur more frequently than erythro-
cyte-rouleau collisions. Thus dimers remain the most prev-
alent species. When k, = 1 (Fig. 2 b) dimer formation and
chain elongation occur with equal rates and aggregates
with three, four, and five cells occur in appreciable
numbers. Lastly, if k. « 1 (Fig. 2 ¢) chain elongation
occurs more frequently than dimer formation. Hence, once
a two-cell rouleau is formed it quickly becomes a trimer.
Similarly, three-cell rouleaux quickly convert to four-cell
rouleaux and so on. Thus as Fig. 2 ¢ shows, the predomi-
nant species changes sequentially from two-cell to three-
cell to larger rouleaux.

Other ways to display this data are to examine for fixed
times the number distribution of rouleau R’ (n), or the
number of red cells in rouleaux, nR’ (n). In Fig. 3a we plot
fork.=1,R (n)vs.nfort’' =1,2,3,5,8,and 10. At large
values of ¢’ the curves superimpose indicating that a
steady-state distribution is being approached. A plot of
R’ (n) vs. n will be called the “rouleau number distribu-
tion, inasmuch as it indicates the number or, more precise-
ly, the concentration of rouleau of size n. In Fig. 3 b, we
plot for k.= 1, nR’ (n) vs. n for various ¢’. This plot, which
we call the “rouleau weight distribution” or the “red cell
distribution,” indicates how the red cells are distributed
among the various rouleaux. Here we see that at ¢’ = 10
the majority of red cells are in three-cell rouleaux, even
though two-cell rouleaux are the most prevalent species
(Fig. 3 a).

For k. = 2 we can analytically determine the concentra-
tion of erythrocytes and the total rouleau concentration in
the limit as  — « (see Appendix I). For other values of k.
these limiting concentrations can be found numerically.
Table I shows the results of numerically integrating the
nondimensional form of Egs. 2 and 4 (Egs. Al1.1 and A1.2)
to time ¢’ = 20, for different values of k.

The parameter U, listed in Table I, is the mean size of
the units in suspension. In terms of dimensional variables

U=E,/(E +R). (10)

The numerator represents the total number of erythro-
cytes, and the denominator represents the total number of
units (red cells and rouleaux) each expressed per unit
volume. The ratio is the mean “size” of, or number of cells
in, a unit. This quantity becomes negligibly different from
the mean size of a rouleau when the aggregation process is
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Kinetics of Rouleau Formation

FIGURE 2 The kinetics of rouleau formation with a pure addition
mechanism. R’ is the total concentration of rouleaux, R’(n),n =2, 3, ...
is the concentration of rouleaux with n cells and E’ is the free erythrocyte
concentration. All variables are nondimensional. (@) k. = 10., (b) k&, = 1.,
(c) ke=0.1.
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FIGURE 3 The distribution of rouleaux for a pure addition mechanism with k, = 1. (a) The concentration of rouleaux of size n, R'(n), vs. n,
(b) the concentration of erythrocytes in rouleaux of size n, nR'(n), vs. n for various values of #'.

TABLE |
THE NONDIMENSIONAL CONCENTRATIONS OF
ROULEAUX, R’, FREE ERYTHROCYTES, E’, AND THE
MEAN SIZE OF UNITS IN SUSPENSION, U = 1/(E’' + R,
AT TIME ¢ = 20 FOR VARIOUS VALUES OF k;

k. R’ E' U

0.1 0.1641 0.0334 5.065
0.2 0.2085 0.0104 4.569
0.4 0.2571 0.0028 3.848
1.0 0.3224 4x 107 3.098
20 0.3679 1x 1074 2.717
4.0 0.4066 3x 107 2.459
10.0 0.4452 1 x 1073 2.246

nearly complete because E approaches zero. Note that for
k. = 2, the computed value at ¢’ = 20 of U (2.717) is
already quite close to its asymptotic value (2.718), found
in Appendix I.

From the data in Table I, we see that the asymptotic
mean rouleau size is approximately three cells for k. = 1.
This is in agreement with the maximal value of the mean
unit size (also called the microscopic aggregation index, or
MALI in the literature) found experimentally by Chien
(1973) at low cell densities and using dextran as the
bridging macromolecule. By contrast when fibrinogen is
used, mean unit sizes of up to eight cells are found (Jan
and Chien, 1973c¢). Thus, a comparison to published data
on the average size of a unit shows that the addition theory
predicts a realistic mean aggregate size for dextran
systems when E, is small (i.e.,, at low cell densities).
However, the addition model for reasonable values of k.

does not predict sufficiently large aggregates to account
for the fibrinogen data.

In a typical chemical addition polymerization reaction,
the concentration of “initiator molecules” is small
compared with the concentration of monomers, and large
chains have opportunity to form. However, in rouleau
formation, every.free erythrocyte is both an initiator and a
monomer. When all of the monomers have been incorpo-
rated into rouleaux, addition reactions cease. Thus, the
mean size of a rouleau under this model is determined by
the rate of dimer formation k., compared with the rate of
chain elongation k,. As these reactions are similar, we
expect their rate constants to be of the same order of
magnitude. Consequently, a strict addition theory predicts
that predominately small rouleaux will form. To obtain
large rouleaux, one needs to consider reactions between
rouleaux. Even if such condensations are very unlikely,
they will become the dominant process as free erythrocytes
are consumed. The photographic sequences in Fig. 4
illustrate condensation reactions between rouleaux.

Condensation Kinetics and Rouleau
Formation
By including a condensation reaction with rate constant k.,
one can modify the addition theory to allow any two

rouleaux to join. The equation for the erythrocyte concen-

tration is unaffected by condensation,
dE/dt = — k,E* — k,ER. (11)

However, because two rouleaux may now join to form a

FIGURE 4 Condensation of rouleaux. Two sequences of photomicrographs, taken under oil immersion, show pairs of rouleaux from the time of first
adhesion through the process of alignment. Each sequence spans a time period of order 1 min. Samples were prepared as described in

Fig. 1.
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FIGURE 5 The kinetics of rouleau formation with a combined addition—condensation mechanism. E’ is the free erythrocyte concentration,
R is the total concentration of rouleaux and R'(n), n = 2, 3, . . . is the concentration of rouleaux with n cells. All variables including the time ¢

are nondimensional. (a) k. = k., = 1., (b) k, = 1. and k. = 10.

single aggregate, the equation for the concentration of
rouleaux becomes

dR/dt = l/2 keE2 - '/z chz. (12)

We have included a statistical factor of 4 in each term
since identical particles are reacting.

If we let k = k. = k, = k., then as in the case of addition
reactions a simple equation can be found for the mean size
of a unit, U. From Eqgs. 10-12 one finds

dU 1
d_t=§kE°’ U@ =1 (13)
and hence
U@)=1+YhkEs. (14)

In the presence of condensation reactions, the following
set of equations can be written for the concentration of
rouleaux of size n:

dR(2)/dt = % k.E* — k,ER(2)

~ kRQ) S R(m), (15)

m=2

dR(n)/dt = k,E[R(n — 1) — R(n)]

n-2
+ %kc > R(n — m)R(m)

m=2

—k.R(n) S_R(m),

m=2

n=3,4..., (16)

where by convention a summation is zero when the upper
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limit is less than the lower limit; i.e., when n = 3 above.
The condensation terms in Eq. 16 are derived by observing
that an n-mer is formed by the collision of an m-mer with
an (n — m)-mer. Such collisions occur with a frequency
proportional to R(m)R(n — m). Summing R(m)R(n—m)
from m = 2 to n — 2 counts every reaction twice, save that
where m = n — m. The rate constant for the formation of
an n—mer from two identical (n/2)-mers is multiplied by a
statistical factor of !4, hence we correct for the double
counting and incorporate this statistical factor by
multiplying the first sum in Eq. 16 by 5. The second
summation accounts for the loss of n-cell rouleaux by
reaction with any other rouleau. As we show below, this
equation is a simple generalization of the Smoluchowski
equation.

One can nondimensionalize and simplify these equa-
tions by using Eq. 9 and Eq. 1, together with the additional
definition

k. = k./k,. (17)

Fig. 5 shows the results of numerically integrating the
nondimensional form of Egs. 11, 12, 15, and 16 with initial
conditions corresponding to a monodisperse system of red
cells. In Fig. 5 a we examine the case in which k= k.= 1.
Comparing with Fig. 2 b, the results obtained when k; =1
and k. = 0, one sees that the concentration of free
erythrocytes decays slower when condensation of rouleaux
occurs. This is easy to understand. When k; > 0 rouleaux
coalesce and form fewer, but larger aggregates. Eq. 11
implies that in the presence of fewer rouleaux, erythro-
cytes undergo collisions less frequently with rouleaux, and
consequently E decays slower. One might argue that when
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two rouleaux condense the resulting aggregate should have
a larger collision cross-section and thus compensate for the
decrease in the rouleaux concentration. Consequently, k,
should not be constant, but rather should increase with
rouleau size. This generalization will be dealt with in the
next section.

Continuing the comparison between Figs. 2 b and 5 q,
one sees that the inclusion of condensation causes R’ to
decrease at long times, rather than to asymptote to a
constant value as £’ — 0 (Fig. 2b). At infinitely long
times, Eqgs. 11 and 12 predict E' = R’ = 0 since all
erythrocytes will eventually form rouleaux and all
rouleaux will eventually condense. Our model does not
predict the final state of the system to be one huge
rouleaux with concentration R’ = 1/VE,. where V is the
volume of the system. This can be remedied by replacing
the term — 1 kR in Eq. 12 with the term — 1 k. R'(R’ —
1/VE,) so that each rouleau collides with all other
rouleaux, but not with itself. If the total concentration of
rouleaux R’ — 0 as ¢’ — o=, then the concentration of
rouleaux of size n, n = 2, 3,..., R’ (n) must also
decrease to zero as t — . This behavior is also shown by
Fig. 5 a.

The effects of changing the parameters k. and k. may
also be explored via numerical integration. If k. is chosen
less than one, say k. = 0.1, then curves resembling Fig.
2 b and Fig. S a are obtained, with R’ decreasing slower
than in Fig. S a at long times and E’ decreasing some-
what faster than in Fig. 5 a but not as fast as in Fig. 2 b.
This is not surprising since Fig. 2 b is the result obtained
when k; = 0. If kis chosen much greater than one, say k.
= 10, then a qualitatively different picture is obtained
with R’ (n), n = 2, 3, ..., obtaining substantial peaks
before decaying, as shown in Fig. 5 b.

Another way to study the effects of parameter changes
is to examine the mean number of cells in a rouleau, (n),
or the mean number of cells in a unit (a rouleau or a free
erythrocyte), (n), defined as follows:

6
(b)

5_
ol <>,
sl o,
2

05 !

o | T N S R R | FERE I SR NN SR N SR B

©

RI
(n), = Zzn " -l ;,E' (18)
> R(n)

n=2

and

SaRM
(n), = -
Z R’(n) E'"+ R

n=1I

(19)

where R’ (1) is defined to be E’. To be consistent with
later notation for mean quantities we have called the mean
number of cells in a unit (n), rather than U. The right
sides of Eqgs. 18 and 19 follow from the definition of R’
(Eq. 1) and the conservation law for erythrocytes

E,=E + ) _nR(n). (20)
n=2

In Fig. 6 we plot (n), and (n),vs. ¢’ for k, = 1 and k; =
0.1, 1 and 10. When the rate of condensation, k., is small
compared to k, we again approximate the situation with
addition reactions only. However, for pure addition
systems (n),and {n), approach a constant limiting value
as free erythrocytes are depleted. We see in Fig. 6 a that
the rate of growth slows down as erythrocytes are depleted
but does not go to zero, as condensation continues rouleau
growth. When k. = k. = 1 (Fig. 6 b) both (n), and {(n),
increase linearly with time, as will be discussed more fully
below. No distinction is made between addition and
condensation with these parameters and the initial linear
rise seen in Fig. 6 a simply continues. When k; = 1 and k|
= 10 (Fig. 6 ¢), condensation is heavily favored and (n),
increases rapidly. After erythrocytes are depleted the
system behaves as if there were only a single rate constant,
k., thus explaining why (n), and (n), increase linearly
after an initial transient.

FIGURE 6 The kinetic behavior of the mean rouleau size (n)r and the mean unit size (n)., with a combined addition-condensation

mechanism. (a) ke = 1., k; = 0.1; (b) k. = 1., k. = 1;(c) k. = 1., k. =
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The measured value of (n), for rouleau formation in
normal human blood mediated by fibrinogen increases
from 1 and saturates at ~8 as the concentration of
fibrinogen is increased from 0.1 to 1.0 percent by weight
(Jan and Chien, 1973¢). From Fig. 6 one notes that
including condensation in the aggregation model allows
one to attain aggregates as large as the ones measured by
Jan and Chien (1973c). To accurately verify a particular
model with a particular set of parameter values more
detailed experimental data would be required, such as the
full rouleau number or weight distribution.

In Fig. 7 we show for k. = k. = 1 the computed rouleau
number and rouleau weight distribution. Comparing these
with Fig. 3 we see that with the inclusion of condensation,
the concentrations of small roueaux rapidly decreases and
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FIGURE 7 The distribution of rouleau for a combined addition-conden-
sation mechanism. (a) The concentration of rouleaux in size n, R'(n) vs.
n. (b) The concentration of erythrocytes in rouleaux of size n, nR'(n)
versus n. Each curve is for a different value of ¢ as indicated and k. =
ke=1.
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the mass of the system is converted into large rouleaux.
This is made particularly apparent by Fig. 7 b in which at
t’ = 1, 2, or 3 small aggregates predominate, and large
aggregates (e.g., of size 14) are rare. However, by ¢’ = 20 a
large number of red cells are in aggregates of size 14 and
larger, and the distribution curve is still increasing.
Computing the mean size of a unit from Eq. 14, one finds
(n), = 25att’ = 3. At ¢’ = 20, (n), increases to 11
confirming the presence, at substantial concentrations, of
aggregates larger than those illustrated in the figure.

If we let R’ (1) denote the nondimensional concentra-
tion of erythrocytes and use the values k. = k. = 1, one
obtains the Smoluchowski equation

n—1

dR’ (n)/dt' =, >_ R’ (n — m) R'(m)

m=1

_R'(m) Y R(m). Q1)

m=1

With the initial condition R'(1,0) =1, R'(n,0) = 0, n =
2,3, ..., it has the solution (cf. Perelson, 1980)

R'(n) - (’5)_'/ [1 + (’5)]+l n=1,2...,

shown in Fig. S a.

Using the Smoluchowski equation as the basis for a
description of the kinetics of rouleau formation, Ponder
(1927) found reasonable agreement with experimental
data taken by turbulently shaking a dilute suspension of
red cells in a test tube for short periods of time and then
counting under a microscope the number of aggregates
with one, two, three,...cells. Only short times were
examined and only aggregates of <12 cells were counted.
To further test the merits of the Smoluchowski theory,
Kernick et al. (1973) used the prediction that the mean
unit size increases linearly with time according to (n), =
1 + ¢'/2 (see Eq. 14). Using Eq. 22 one can also show that
(n), =2 +1'/2. Ast’' = kEyt, where k = k. = k. = k,, a
plot of the mean size of a unit or the mean size of a
rouleaux against time should be a straight line with slope
1o kE,. A plot of {n), or (n), at a fixed time vs. the initial
erythrocyte concentration should also be linear.

Kernick et al. (1973) found that after an initial linear
rise, curves of (n), vs. ¢ flatten out and approach a steady
state after about 30 min. Plotting the mean size of a unit at
10 min vs. hematocrit, Kernick et al. (1973) found that the
data fit a straight line for hematocrits below 4%. At higher
hematocrits they note that branch formation is observed so
that the simple Smoluchowski model with a single rate
constant is no longer applicable. Ponder used an hemato-
crit of ~2.5% in his experiments (Kernick et al, 1973), and
did not report significant branch formation.

(22)
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FIGURE 8 We model a red cell as cylindrical disk with radius » and
thickness h. The disk has two ends with area e and a wall with area w.

I1I. DEGREE OF BRANCHING IN A
ROULEAU

Model Geometry

The first step in describing the formation of branched
chain rouleaux is the choice of a geometric description of
the process and the selection of a set of variables to follow
in the model. We treat the red cell as a flexible cylindrical
disk of radius r and thickness h (Fig. 8). Its surface area
can be thought of as divided into three parts: two faces or
“ends” with area e, and one wall with area w. It should be
clear that

e=7r (23)

and

w = 2xrh. (24)

A branched rouleau is modeled as an aggregate of linear
stacks connected at right angles. The red cells are thought
to be sufficiently flexible to adhere to curved surfaces. The
situation where one finds a symmetric “Y-shaped” branch
(Fig. 9) is not explicitly considered in the theory, but taken
to be the geometrical equivalent of the perpendicular
“T-shaped” branch (Fig. 9). Symmetric branches are
considered in Perelson and Wiegel (1982).

FIGURE 9 The geometry of rouleau branching. A symmetric “Y”
branch and a perpendicular “T” branch.

SAMSEL AND PERELSON Kinetics of Rouleau Formation

Each linear, straight chain portion of a rouleau has two
ends. The ends may either be free, or bound to the side of
another stack. If the end is free, it is termed a cap, and if
bound, it is termed a branch point. Each linear portion of a
rouleau, however bound, is called a branch or segment. A
particular rouleau might be described as having n cells, b
branches, p branch points, and ¢ caps. One can simply
establish that if a rouleau has the topological form of a
tree, i.e., has no cycles, then b, ¢, and p are all interdepen-
dent. The relationship between these variables can be
found inductively, as follows: a cylindrical rouleau has two
caps and one branch. Each addition of a branch also adds
a cap. Hence, ¢ = b + 1 for any rouleau. A particular
rouleau may have many caps, though decidedly fewer caps
than cells. A particular branch, by contrast, may have only
zero, one, or two caps, as shown in Fig. 10. The non-cap
ends of each segment are branch points (see Fig. 10). A
rouleau with b branches has 25 branch ends; ¢ of them are
caps and the remaining p are branch points, so 2b = p + c.
For any rouleau, ¢ = b + 1,50 p = b — 1. Thus, choosing ¢
as the independent variable,

b=c—1landp=c - 2. (25)

It should be noted that # and ¢ do not form a complete
description of any particular rouleau. Many rouleaux
could be formed with n cells and ¢ caps, where the
distribution of cells along branches differs. Even specifying
the number of cells and the number of caps belonging to
every branch of a given rouleau would not provide a
complete description, since many geometrical combina-
tions of the branches are still possible. Thus we are
abstracting only a small amount of the information needed
to describe the system completely. Nevertheless, this
description is sufficient to describe many of the functional
characteristics of a rouleau and the kinetics of its growth.
In their statistical mechanical treatment of the rouleau
size distribution Wiegel and Perelson' show how to count
the number of distinct rouleau with n cells and p branch
points.

(a) (b) (c)
FIGURE 10 A rouleau segment may have 0, 1, or 2 free ends or caps. A
bound end is a branch point. The labeled segment has 0 caps and 2

branch points in a, 1 cap and 1 branch point in b, and 2 caps and 0 branch
points in c.

'Wiegel and Perelson. Manuscript submitted for publication.
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The Probability of Branching

The tendency of rouleaux to form long unbranched chains
is their most striking characteristic. With a simple model,
we can examine the mechanism of the formation of these
long rouleaux. Three assumptions are involved. First,
rouleaux grow by single cells adhering to each other and to
existing rouleaux. Second, collisions between single cells
and rouleaux occur and result in cell adhesion with equal
probability on any part of the external area of a particular
rouleau. Third, in collisions sufficiently close to the end of
a rouleau, the incoming cell will slide or “roll” to an
equilibrium position at the end of the rouleau, while
collisions far from the end of a rouleau will result in the
initiation of a branch. The mechanism by which a cell
moves to the end of a rouleau is not important in our
model. The dynamics of such motions are discussed by
Chien and Jan (1973) and Fung and Canham (1974).

The approach of the model is to postulate the existence
of an “elongation zone” at each end of an unbranched
rouleau. This zone includes the end surface with area e and
the part of the wall within a critical distance r* of the end
of the rouleau (Fig. 11). The probability that a rouleau
will branch when a red cell joins it is just the ratio of the
area outside the elongation zone to the total area of the
rouleau. Conversely, the probability that a rouleau will
elongate when joined by a red cell is the area available for
elongation divided by the total area.

The total surface area A(n) of a straight chain rouleau
composed of n cells is equal to the area of its two ends (2e)
plus the area of its n external walls, or

A(n) = nw + 2e. (26)

The area A* upon which a collision will result in elonga-
tion is

A* =2Q2mrr* + e), (27)

assuming nh > 2r*. The probability P,(n) that the colli-
sion of a red cell with an n-cell rouleau will result in
elongation of the rouleau is given by the ratio 4*/A(n),
ie.,

P.(n) = 2r*/r + 1)/(1 + nh/r) forn> 2r*/h. (28)

When the height of an existing stack of n red cells, nh, is

FIGURE 11 A straight chain rouleau with n cells and total length nh has
two elongation zones each beginning a distance r* from the end of the
rouleau. We assume that a cell that lands with its center in an elongation
zone will move to the end of the rouleau, whereas a cell that lands with its
center outside of the elongation zone will initiate a branch.
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< 2r* elongation must occur. Therefore

P.(n) =1forn<2r*/h. (29)

Assuming cells add one at a time, n — 1 successive
elongations are needed to form an n-cell rouleau without
branches. The probability P,(n) that a randomly selected
n-cell rouleau will be a straight chain is given by

P,(n) = P.(n — 1)P(n - 1)
or,
Pm) - T[ P, n=2.3..., GO

i=1

where P,(1) = 1 by definition.

Measurements of the geometry of human red cells
establish that the typical erythrocyte has a volume of 94
pm® and a surface area of 135 um? (Evans and Fung,
1972). Assuming that our cylindrical model of a red cell
has these characteristics, then h/r = 0.62. A red cell is
unlikely to climb to an equilibrium position at the terminus
of a rouleau if its center lands appreciably more than a
single red cell radius from the end of the rouleau. Thus r*
is probably = r, and it is useful to set r* = fr, where 0 =
f=1

Fig. 12 a shows the values of P, plotted vs. n for values
of fbetween 0 and 1.0 and h/r = 0.62. The values of P; are
plotted vs. n for the same values of f'and h/r in Fig. 12 b.
As one might expect, Fig. 12 a shows that the elongation
probability increases with the size of the elongation zone,
i.e., with f. Notice that the ability of a cell to align itself on
the end of a rouleau can have a striking effect on the
elongation probability. From Eq. 28 we deduce that P.(n)
increases threefold when f = 1 as compared to when f = 0.
From Fig. 12 b we see that even with a maximal elonga-
tion zone, it is unlikely to find straight chain rouleaux with
more than 13 or 14 cells. (Eq. 30 determines exactly how
unlikely such events are). Thus large rouleaux are
expected to be branched, and each branch, which would
correspond to a straight chain rouleau in this theory, would
generally be expected to contain at most 13 or 14 cells.
Longer straight segments would appear but at a very low
frequency. This upper limit of 13 or 14 depends on the
ratio h/r and thus would vary somewhat among different
species.

Notice this theory makes no predictions about how
many n-cell rouleaux will form; it only gives information
about the expected degree of branching in a population of
n-cell rouleaux observed at any fixed time. Because we
assume rouleaux grow by single cell addition, this theory is
expected only to be valid for short times or for those
experimental situations in which addition polymerization
is a good kinetic model. The theory is not easily general-
ized to models involving other kinetic mechanisms, and it
provides no information about the size distribution of
branched rouleaux. To make further progress, we shall
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FIGURE 12 (a) The probability of a chain of length n being elongated P.(n) and (b) the probability of finding a straight chain of length n,
P,(n), vs. the numbser of cells in the rouleau, n, for various values of f = r*/r, assuming h/r = 0.62.

consider the detailed growth kinetics of branched
rouleaux, following the techniques of polymerization
kinetics.

Variables Describing Branched Rouleaux

For a detailed description of branched rouleaux, we intro-
duce the variables E, R(n, c¢), and S(n, ¢), defined to be
the concentrations of free erythrocytes, n-cell/c-cap
rouleaux, and n-cell/c-cap straight chain segments in
rouleaux, respectively. (Here, a straight chain or branch is
taken to be a segment regardless of whether it is a free
cylindrical rouleau or bound in a treelike rouleau).

The total concentration of branches or segments .S and
the total concentration of rouleaux R are defined as
follows:

S-Y S(ne) (31)
and
R =) R(nc). (32)

Let (n), and (n), denote the mean number of cells in a
segment and in a rouleau, respectively, and let E, be the
total concentration of erythrocytes in the system. By
conservation of erythrocytes

Ey=E + {(n),R, (33)

and

E, = E + (n),S. (34)

Three additional variables are useful: M, the total
number of caps per unit volume; 7, the total area per unit
volume belonging to the external surfaces of red cell
aggregates; and W, the total area per unit volume
belonging to the walls of the red cell aggregates. Free

SAMSEL AND PERELSON Kinetics of Rouleau Formation

erythrocytes are excluded from designation as rouleaux or
as segments, and likewise do not count as caps in M or
contribute area to T and W. The concentration of caps M
can be computed from

M =) cR(n,c). (35)
Obviously, it is equally valid to write
M=) cS(nc). (36)

Likewise, if A(n, c) is the external area of a rouleau with n
cells and c caps, then T can be computed from

T =) A(n, c)R(n, c). 37)

Lastly, if a, is the external surface area of a single cap,
then

W=T_ Ma,. (38)

The simplest interpretation for a, is the area of a face or
end of a single red cell, e, as defined by Eq. 23. However,
due to the presence of elongation zones at the ends of
straight segments, there will be circumstances when we
wish to consider a, > e.

Only three of the six variables M, E, T, R, W, and S are
independent. One connection is through the definition of
W (Eq. 38). Another is a topological relationship between
M, S, and R (see Eq. 43). The third relates T and E and R,
and may be found by deriving an explicit formula for
A(n,c) as shown below. A rouleau is an aggregate of
straight segments, and thus can be thought of as being
formed by a process in which a single, long, straight chain
rouleau is split successively, and the halves reattached
differently (Fig. 13). The process shown can be carried out
repeatedly to form a rouleau of any desired complexity.
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FIGURE 13 A branched rouleau can be formed by iteratively splitting a
straight chain segment and reattaching the two halves as shown.

(Note that this is not a proposal for the mechanism of
rouleau formation, but a construct to simplify thinking
about the geometry.) What is notable about this process is
that it conserves surface area. Breaking a rouleau in two
creates two new faces each with area e. Attaching one of
these faces on the side of a rouleau annihilates the same
area 2e, a face with area e is lost, as well as the area it
adheres to on the side of the rouleau (~e). Consequently,
to the order of our approximation, A(n, ¢) is independent
of ¢, so we need only find 4A(n) for a straight chain
rouleau. This is clearly given by

A(n) = nw + 2e. 39)
Substituting this in Eq. 37, we find
T=(w({n), + 2e)R. (40)

The total area belonging to aggregates can also be found
by a slightly different stratagem. Each bound cell contrib-
utes an area w, and each cap contributes an area e to the
aggregate, but each branch point subtracts an area e from
that contributed by the walls of the bound cells. A segment
has 2 ends; ¢ of them are free, so (2 — ¢) of them are
bound and form branch points. Hence

T=w(E,—E)+ Me—e) (2-c)S(nc), (41)

nce

or, with the use of Egs. 31 and 36,
T=w(E, — E) + 2Me — 2eS. (42)

Combining Egs. 33, 40, and 42 we find the surprisingly
simple relation

M-S +R (43)

This conclusion can also be found inductively, and by the
following alternate derivation: recall that

M = Z ¢R(n, c)

and

c=b+ 1.
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Thus
M=) bR(nb) +Y R(nc)=S+R, (44)
nb nce

where R(n,b) is the concentration of rouleaux with n cells
and b branches.

From a knowledge of E, R, and S, the mean values
(n),, and (n), can be found, as can the mean number of
branches in a rouleau (b) (given by (b) = S/R) and the
mean number of caps in a rouleau (c) (given by
(c¢) = M/R). The necessary equations are given above.

Using the assumption that the process of rouleau forma-
tion occurs by a kinetic process whose rate is proportional
to the area available for reaction, we can write equations
for the time dependence of E, M, T, W, R, and S. The
theory allows several different reactions to occur, each
with an independent reaction rate per unit area. The
details of the derivations are outlined next.

Kinetic Equations for Branched Rouleau
Formation

The essence of our theory lies in delineating different types
of reactions that may occur between erythrocytes and
rouleaux or between different rouleaux, and in making the
a priori assumption that for any particular reaction the
reaction probability per unit area is equal everywhere on
the external surface of all rouleaux. Consequently, we
assume that the probability that a given rouleau will
undergo any reaction in a unit time is proportional to its
area available for that reaction. In each reaction, we shall
assume that the rate of reaction is given by a rate constant
per unit area k, times the available area for the reaction,
times the concentration of cross-reactive species (either
cells or caps).

To simplify thinking we view the collision of an erythro-
cyte with a rouleau as a point collision, the point of contact
being the center of the incoming cell. Incorporating the
notion of an elongation zone, we shall assume that if an
erythrocyte strikes the face or possibility the wall of the
last cell of a branch, then it will rapidly assume a position
on the end of the branch, whereas a collision further from
the cap will result in branching. Formalizing this notion
we shall assign a “reactive area” a. to each cap which
denotes the total area upon which a collision with a red cell
results in branch elongation. If the size of the elongation
zone r* is zero then a, = e, i.e., only collisions on the end of
a branch result in elongation. Alternatively, if a collision
anywhere on the wall of the terminal cell of a branch
results in elongation, then r* = h and a. = e + w. For
notational consistency we shall denote the reactive area of
an erythrocyte a.. When a red cell collides with another
erythrocyte we shall assurne that the collision can take
place anywhere on the cell surface and still result in dimer
formation with the cells adhering face to face. Thus the
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total surface area of the red cell is reactive, i.e.,

a, =2e + w. (45)

Although we are developing a kinetic theory of rouleau
formation, we shall not explicitly deal with the kinetics of
cell rolling and alignment on to the end of a growing
rouleau. Rather, we simply assume that a cell which lands
in an elongation zone moves to its position on the end of
the branch at a rate which is sufficiently rapid compared
to the cell collision rate that we can neglect the alignment
time in our treatment of the overall kinetics.

In our condensation theory of rouleau formation we
distinguish five types of reaction, each with a characteris-
tic rate constant per unit area. First, two erythrocytes may
collide to form a two-cell rouleau (Fig. 14 a). This is the
prototype reaction whose mechanics have been worked out
in the greatest detail (Skalak et al.,, 1977). Second, an
erythrocyte may strike a cap and elongate the rouleau
(Fig. 14 b). Third, an erythrocyte may strike the side of a
rouleau and initiate a new branch (Fig. 14 ¢). Fourth, two
caps may collide to form a longer branch (Fig. 14 d).
Fifth, a cap may adhere to the wall of a rouleau (Fig.
14 e).

We neglect the possibility that the wall of one rouleau
adheres to the wall of another rouleau at this stage in the
development of our theory. Although lateral associations
between rouleaux are seen, especially in systems with high
adhesion energies (Fukada and Kaibara, 1980), such
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FIGURE 14 Diagrammatic representation of reactions that generate
rouleaux. (a) Two erythrocytes react with rate constant per unit area k.,
(b) An erythrocyte reacts with the cap on a rouleau with rate constant
per unit area k... This reaction elongates the rouleau. (c) An erythrocyte
reacts with the wall of a rouleau to initiate a branch with rate constant
kew, (d) Two rouleaux react via a cap-cap interaction with rate constant
per unit area k., (¢) Two rouleaux react via a cap-wall interaction with
rate constant k.
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contacts could occur over quite variable interaction areas,
thus complicating our theory. According to Volger et al.
(1973) rouleaux attached side by side are seen under
pathological conditions, while under normal conditions
only end-to-side attachments are seen. Consequently, our
theory may not be applicable to rouleau formation in
certain pathological states.

The concentration of erythrocytes changes with time as
the result of the first three processes illustrated in Fig. 14.
Therefore the differential equation for E has three terms;
two erythrocytes are lost for each occurrence of the first
reaction [2E — R(2,2)], and one erythrocyte is lost
per occurrence of the elongation reaction [E +
R(n,c) — R(n + 1, ¢)] and per occurrence of the branch
initiation reaction [E + R(n,c¢) — R(n + 1, ¢ + 1)]. Let
ke, k.., and k., denote the rate constants per unit area of
the erythrocyte-erythrocyte, erythrocyte-cap, and erythro-
cyte-wall reactions, respectively. Including a statistical
factor of ! for the erythrocyte-erythrocyte interaction one
finds

dE/dt = —k.a.E? — k.aME — k,EW. (46)

where a, and a. are the reactive surface areas of an
erythrocyte and a cap, respectively.

By similar reasoning, we find equations for the other
variables mentioned. However, the remaining variables
are affected by the condensation reactions as well as by
addition reactions. We define two additional rate
constants per unit area, k. and k,, to describe the cap-cap
and cap-wall reactions, respectively. Caps are created by
the erythrocyte-erythrocyte pairing (which generates two
additional caps) and by the branch initiation reaction
(which generates one). Similarly, caps are lost two at a
time in the cap-cap condensation, and singly in the cap-
wall reaction. Including statistical factors of 's» for the
erythrocyte-erythrocyte and cap-cap reactions, we can
write

dM/dt = k.a.E? + k, EW

~ kea M2 — kK, MW. (47)

In a similar way, we can write an equation for the rate
of change of the total external area, d7/dz. One differ-
ence, however, is that we now must consider the area
added to rouleaux from each reaction, since T is an area
concentration rather than a number concentration. The
erythrocyte-erythrocyte reaction adds an area 2(e + w)
for each occurrence and requires a statistical factor of 4.
The elongation and branch initiation reactions each add a
net external area w. The cap-cap reaction and the cap-wall
reaction each absorb an area 2e per occurrence. Since the
cap-cap reaction requires a statistical factor of 4, we find

dT/dt = a.(e + w)k. E* + wk. a ME
+ wk EW — ek a.M? — 2ek, ., MW. (48)
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A differential equation for the reactive wall area per
unit volume can be constructed from Eqs. 47 and 48 since
W = T — Ma.. However, a direct derivation of the
equation is more instructive. Recall that the reactive cap
area a. may be greater than e and therefore an area, a, —
e, must be subtracted from the wall area of each cell that
forms a cap when computing W. As we explain below

dw/dt = [w — (a. — e)]k..a.E’
+ wk.aME + (w — a))k.,.EW
+ (a. — e)k.aM? + (a, — 2e)k, ,MW. (49)

When two erythrocytes collide forming a two-cell rouleau,
the reactive wall area is increased by 2w, but then is
decreased by 2(a. — e) as two caps are also formed.
Including a statistical factor of !4 gives the first term. In
the second term, an erythrocyte adds to an existent cap
and therefore extends a straight chain by one cell and adds
an area w to W. When a red cell attaches to a wall the
reactive wall area increases by w but decreases by two
factors: a. — e due to the formation of a cap and by e due
to the wall area covered by the red cell. Combining these
factors gives the third term. In the cap-cap reaction, with
statistical factor 5, two caps are lost and therefore an area
2(a. — e) is gained as reactive wall area. Lastly, in a
cap-wall reaction one cap is destroyed contributing a
factor a, — e and an area e on the existent wall is covered
by the newly attached cap.

Eqgs. 46, 47, and 49 form a closed system so that
numerical integration is immediately possible. From E, M,
and W, one can find R and S. Using Egs. 38, 42, and 43 we
obtain

S =[(Es — E)W + (2¢ — a)M — W]/2e  (50)

and

R=M-S. (51)

Alternatively, one can write differential equations
directly for S and R. The joining of two erythrocytes
creates new branches and new rouleaux. On the other
hand, chain elongation due to the erythrocyte-cap reaction
does not change S or R, and branch initiation due to the
erythrocyte-wall reaction increases S but does not change
R. Each occurrence of the cap-cap reaction results in the
loss of a branch and of a rouleau, but the cap-wall reaction
results only in the loss of a rouleau. Therefore

dR/dt = s ke.a E* — Vs kaM* — ko MW, (52)
and
dS/dt = Vs kea E* + ko EW — s ka . M?.  (53)

Substitution of Egs. 46, 47, and 49 into Egs. 50 and 51
verified that the last two equations are entirely consistent
with the previous five.
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Proceeding in a similar way, one can write a coupled
infinite set of differential equations for R(n, ¢) and S (n, c)
that includes E, M, and W as variables. Since the equa-
tions are very complex, we treat them in Appendix II. The
two systems R(n, c) and S(n, ¢) offer different informa-
tion about the rouleau distribution, and neither can be
used in any simple way to predict the other. The equations
for R(n,c) are infinite in number, as n and ¢ are both
theoretically unbounded, although 2 = ¢ = n. The system
based on S(n, ¢) is also infinite, but only in one dimension,
as c only has values 0, 1, and 2. Therefore, the number of
relevant equations is significantly smaller in the branch
based system than in the rouleau based system.

In Appendix III, we derive from the detailed set of
equations for S(n, ¢), differential equations for the total
concentration of segments with ¢ caps,

Sc) =Y _S(nc), ¢=0,1,2.
n=1

These quantities are of interest for two reasons. First, they
can be determined experimentally from photomicrographs
of rouleaux. Second, once E, M, and W are known, a set of
the three simple equations that can be solved numerically
determine S(0), S(1), and S(2). Thus predictions about
the mechanism of rouleau formation can be tested without
resort to examining the complete R(n, ¢) or S(n, ¢) distri-
butions.

Numerical Solutions

Using numerical methods we can study the kinetics of
branched rouleau formation. To reduce the number of
parameters we nondimensionalize Eqs. 4651 according to
a scheme given in Appendix IV. With this nondimension-
alization the rate constant describing the formation of a
two-cell rouleau from free erythrocytes is taken as unity. If
a free erythrocyte can react with a cap as easily as with
another free erythrocyte, then k. = k.. Generally, with
low concentrations of bridging macromolecules, a red cell
cannot adhere as well to the side of a cylindrical rouleau as
compared with its end, being unable to bring as much
surface area into direct contact with the curved side of the
rouleau. Thus k., and k., should be less than k... At high
concentrations of bridging macromolecules, or with longer
macromolecules, branch formation may become more
favorable. Thus the values of k., and k. will depend
critically on the experimental conditions. For illustrative
purposes we shall assume low adhesive energies, with k.,
ke < k... The cap-cap reaction involves the adherence of
erythrocytes, generally face to face, but with potentially
massive aggregates colliding. Thus k., = k.. We will
examine several possible values for k.

We also need to specify the reactive cap area, a.. This
area is at least e, the area of a red cell face, but may be
larger due to the presence of an elongation zone. In our
simulations we shall assume-a. = e + w, i.e., an erythro-
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cyte colliding with the wall of the terminal cell in a
cylinder will move to the end of the cylinder and two caps
that collide slightly off center wil! eventually align. With
these assumptions and a. given by Eq. 45, the only
geometric data we require is h/r for a red cell. For a
typical, unstressed, human red cell we shall choose &/r =
0.62 as before.

In Fig. 15 a we plot various means quantities vs. ¢’ for
ke = kee, ko = 0.1 k., and k, = k, = 0.05 k... Note (n),
increases linearly and then slowly bends downward, remin-
iscent of the data reported by Kernick et al. (1973). For
this range of times, the mean size of a rouleau remains
small and there is not much branching, phenomena consis-
tent with the observations of Kernick et al. Note that at
t'=10,(n), =53,(n),=43,and (c) = 2.2. Fig. 15b
shows how E, R, and S vary with time. When free
erythrocytes are consumed, rouleaux condense and their
total concentration, R’, decreases. Similarly, the concen-
tration of straight segments, S’, is reduced due to cap-cap
interactions. If k. is increased to 0.5 k., then more
condensation occurs. As shown in Fig. 15¢, rouleau
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FIGURE 15 Dynamics of branched rouleau formation (a). A plot of
(n).., (n),, (n)‘ and (c) vs. time, for ko, = ke, koc = 0.1 kg, ke =
Kew = 0.05 k.., a. = e + wand h/r = 0.62. With these parameter values
ke. = 0.692, k. = 0.069 and k., = k., = 0.019. (b) A plot of E’, S’ and R'
vs. ¢ for the parameter values in (a). (c) Same as a except k. = 0.5 k.
(d) E', R and S’ vs. t for the parameter values in c. (¢) Same as a except
ke = 0.5 ke, and k,, = ko, = 0.2 k.. (f) A plot of E’, S" and R’ vs. ¢ for
the parameter values in e.
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become longer (at ¢ =10, (n),=11.6, {(n), =80,
(c) = 2.4) and the concentrations R’ and S’ are reduced
even further at long times (Fig. 15 d). The {(n ), curve also
changes character, being concave up rather than concave
down, reflecting the rapid decrease in both E’ and R". If k,,
is held constant at 0.5 k.. and the branching rate doubled
so that k., = k., = 0.1 k.. (not shown in Fig. 15), then at
t' = 10, (c) increases to 3.1, segments become shorter,
(n), = 7.3, and the mean rouleau size increases to (n), =
15.9. At this branching rate the mean rouleau would have
two branches.

Rouleaux are more highly branched as k., or k., is
increased further or if larger values of ¢’ are examined. As
shown in Fig. 15, (c) increases to 8.9 at t' = 10 if the
branching rates are again doubled so k., = k., = 0.2 k...
For these parameters, at ¢’ = 10, the mean rouleau would
have eight branch points, each straight segment would
have mean length 6.3, and the whole rouleau would
contain 50 cells. The very dramatic increase in the mean
rouleau size as ¢’ approaches 10 is due to rapid condensa-
tion of rouleau. At ¢’ = 10 R’ = 0.02 (Fig. 15f) and is
rapidly approaching zero.

IV. DISCUSSION

We have formulated a set of models to account for the
kinetics of rouleau formation. Our approach based upon
polymerization kinetics generalizes the work of Ponder
(1927) who applied Smoluchowski’s (1916, 1917) kinetic
description of coagulation to rouleau formation. Like
Ponder and Smoluchowski we have considered aggrega-
tion to stem from the formation of irreversible attachments
between cells. Consequently, our models are limited to
describing the early phases of rouleau formation during
which dissociation kinetics can be ignored. In a later
publication’ we shall show how the ideas developed here
can be extended to include disaggregation kinetics and
phenomena such as loop formation which may become
important in later stages of rouleau formation. Perelson
and Wiegel (1982) have used statistical mechanical tech-
niques to compute the equilibrium distribution of rouleau
sizes. The kinetic studies that we are initiating here
complement this work.

Our models are based upon the ideas of addition and
condensation polymerization reactions. Assuming that a
kinetic study of rouleau formation is begun with a mono-
disperse suspension of red cells, the predominant initial
interactions should involve erythrocytes colliding to form
pairs, the smallest aggregates which we consider to be
rouleaux. As the reaction proceeds, red cells add to exis-
tent rouleaux, increasing their size, until all free erythro-
cytes are depleted. Using reasonable assumptions about
rate constants, we showed that this addition process leads

2Samsel and Perelson. Manuscript in preparation.
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to small rouleaux, in agreement with observations made
using dextran as the bridging macromolecule.

As free erythrocytes become depleted, interactions
between rouleaux must become the predominant reaction
mechanism. Such condensation reactions can lead to very
large rouleaux. If the interactions between free erythro-
cytes, between free erythrocytes and rouleaux, and
between different rouleaux are all described by the same
rate constant, then the Smoluchowski equation used by
Ponder (1927) results. Even though this equation
comprises an infinite system of quadratic nonlinear ordi-
nary differential equations, it has a closed form solution
that is easy to study. The equation predicts that the mean
number of red cells per rouleau increases linearly with
time. Thus, arbitrarily large rouleaux form, but owing to
conservation of red cells, with vanishingly small concentra-
tions. The experiments by Kernick et al. show that the
linear growth of the mean unit size predicted by the
Smoluchowski equation is only obeyed for short times
(~20 min in their experiments). At longer times, the rate
of growth of the mean unit size decreases and eventually
the mean unit size approaches some final value. Kernick et
al. (1973) also point out that the solution to the Smolu-
chowski equation predicts that the mean length a unit
attains after a fixed reaction time rises linearly with the
initial concentration of red cells, i.e., with E,. Their
experiments confirmed this behavior over the limited
range of hematocrits studied, 0—4%.

In section II we generalized the Smoluchowski equation
by using three separate rate parameters to describe
erythrocyte-erythrocyte reactions (k.), erythrocyte-
rouleau reactions (k,), and rouleau-rouleau condensations
(k.). When we assume these rate constants are not all
equal, we have not been able to obtain a closed form
solution to the resulting system of differential equations
which determines the concentration of rouleaux of size n.
However, numerical techniques can be applied to obtain
solutions for reasonable sets of parameter values. By
scaling the equations we need only specify two parameters:
k, = k./k, and k, = k./k,. If single erythrocytes react
more frequently than aggregates, then k, > k. and the
mean rouleau size will initially rise linearly and then
continue to increase, but with constantly decreasing slope
as if it were approaching a saturation value (see Fig. 6 a).
Thus one can qualitatively fit the kinetic data of Kernick
et al. with this generalization of Ponder’s model, although
true saturation is only reached if k; = 0.

The behavior of (n), shown in Fig. 6 a depends upon
t' = k,Eqt. Thus the same plot can be used to predict the
behavior of (n), vs. E,, for fixed z. The initial linear rise of
this curve is consistent with the linear increase in mean
unit size seen at low hemocrits by Kernick et al. (1973).
However, if k. > k. then we would predict that at
hematocrits higher than those studied by Kernick et al.
(n), would increase slower than linear as shown in
Fig. 6 a.
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Our generalization of Smoluchowski’s equation still
does not realistically represent all the dynamic features of
rouleau growth. For example, the rate of addition of a
single red cell to a rouleau is assumed to be constant,
irrespective of the size of the rouleau. If a red cell can
adhere to the wall of cylindrical rouleau, then one would
expect the rate of such phenomena to depend upon rouleau
size. Similarly, the rate of collision between rouleaux
might be expected to depend on rouleau size. To incorpo-
rate these generalizations, we chose to model branch
formation in rouleaux and make the rate constants of
collision processes depend upon the area available for
reaction. Long rouleaux having more surface area than
small rouleaux will be more likely to have a branch
initiated along their length.

Branching is generally rare among small rouleaux. Two
red cells tend to adhere face to face, and if they adhere
with other orientations they slide or roll relative to each
other until this configuration is attained. A red cell adher-
ing near the end of a rouleau can likewise move to the end
and adhere face to face with the end cell. This motion is
most likely due to an imbalance of forces on the red cell,
with motion ceasing once the equilibrium position of face
to face adhesion is attained. A red cell adhering far from
the ends of a rouleau is most likely exposed to a symmetric
distribution of forces and by random thermal motion
would rarely find the absolute minimum energy state at
the end. We therefore postulated that there exists an
elongation zone near each end of a rouleau, on the order of
one cell radius in size, such that a red cell landing in the
elongation zone will move to the end of the rouleau. Red
cells that adhere outside the elongation zone are postulated
to initiate branches. Assuming rouleaux grow by single cell
addition, we were than able to compute the probability of
finding a straight cylindrical rouleau containing n cells.
Our computations indicated it unlikely to find straight
rouleaux longer than 13 or 14 cells. (It is interesting that
Ponder in his study of linear rouleaux only considered
aggregates containing up to 12 cells.) If branching occurs,
the same arguments apply to the length of each branch.

For rouleaux growing by condensation, we constructed a
more detailed kinetic model. Calling a free end of a
branched rouleau a cap, and including the area of the
elongation zone in the cap area, a., we formulated a set of
kinetic equations to describe the rate of change in the total
rouleau concentration (R), the free erythrocyte concentra-
tion (E), the cap concentration (M), the concentration of
straight segments (S), the total external surface area of
rouleaux (T), and the wall area of rouleaux available for
branching (W). Using conservation equations, we showed
that only three of these variables are independent. We also
formulated two detailed sets of differential equations that
determine the concentration of rouleaux containing » cells
and ¢ caps, R(n, c), and the concentration of straight
segments containing n cells and ¢ caps, S(n, ¢). Suffi-
ciently detailed experimental determinations are not yet
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available to confirm the predictions of this kinetic model.
However, examining {n), we found that for reasonable
parameter values (n),(¢) increases linearly at early times
as reported by Kernick et al. (1973), and then continues to
increase but with decreasing slope. Also the values of
(n),(?) are similar to those found by Kernick et al.

Adjusting the parameters in this model it is possible to
obtain a large class of kinetic behaviors including the
formation of only small unbranched rouleaux, the forma-
tion of large branched networks, and many intermediate
structures. By analyzing the interactions among red cells
in great detail it may be possible to predict the values of
the various rate constants which describe rouleau elonga-
tion and branching and hence obtain a theory that predicts
the characteristics of rouleaux formed under different
experimental conditions. Although we have made no
explicit assumptions about the mechanism of red cell and
rouleau collision (e.g. Brownian motion, turbulent
mixing), we have assumed that the rate constants per unit
area are constant. Thus, more detailed calculations would
be required for flow fields in which the collision rates
depended upon the spatial position in the fluid.

Because we have taken the aggregation to be irrevers-
ible, our model becomes incorrect at long times. This stems
from two related problems. First, irreversible aggregation
is not a realistic model because in any physical situation
breakup of rouleaux will eventually limit the size of
aggregates. (Irreversible condensation implies that all of
the cells will eventually end up bound together in a single
large aggregate.) Second, as aggregates grow very large,
the assumption that rouleaux will have a tree geometry
(i.e., have no loops) becomes invalid because the probabil-
ity that a cap will bind to another cap or wall on the same
rouleau is no longer negligible. Thus, to describe the
long-time behavior of rouleau formation requires that we
consider both disaggregation and loop formation. In a later
publication’ we will show how to modify the present
formulation to include these long-time effects and thus
extend the validity of the model to situations in which
equilibrium is attained.

APPENDIX I

Limiting Behavior of the Addition Model

Here we find the concentration of rouleaux and the mean unit size for a
pure addition mechanism in the limit # — o for k., = 2. This limit
corresponds to the time at which all free erythrocytes have been incorpo-
rated into rouleaux.

With k; = 2, the nondimensional forms of Eqs. 2 and 4 reduce to

dR'/df = E?, (Al.1)
and
dE’/dt = —2E” — E'R.. (A1.2)
Letting
U=1/(E'+ R), (A1.3)
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it is easy to see that

du/dr = UE', (Al1.4)

and
dE'/dt = —E* — E'/U. (A1.5)
Dividing Eq. A1.5 by Eq. A1.4, we have
dE'/dU = —-E'/U — 1JU~
Hence
d(UE)/dU = —1/U.

So

UE' =InU + 1, (A1.6)

where 1 is the constant of integration needed to satisfy the conditions
E' =1and U =1 at ¢ = 0. Substituting Eq. A1.6 into Eq. A1.4 gives an
equation that can be integrated to yield
t =e[lE/(1 —InU) — E|(1)], (A1.7)

where E,(-) is the exponential integral of order 1 (cf. Abramowitz and
Stegun, 1970), E,(1) = 0.21938 ..., and e is the base of the natural
logarithms. Unfortunately, the function E,(-) has no explicit inverse and
Eq. A1.7 can not be solved analytically for U(¢').

At large t, E' approaches 0, (intuitively, this may be used as an index of
the extent of reaction for pure addition systems). Hence from Egs. A1.6
and Al1.3

lim U(t") = e = 2.71828 . .. (A1.8)

and

lim R'(¢) = 1/e = 0.367879. . .. (A1.9)
t'—

These limiting values are useful since they may be compared with
experimental determinations.

APPENDIX II

Equations for S(n, ¢) and R(n, ¢)

Incorporating the effects of branching in the study of the condensation
kinetics of rouleau formation leads to much more complicated equations
than were found for the theories neglecting branching. Fig. 14 shows the
relevant reactions, and may be useful as a rough guide in formulating the
equations in this appendix.

In writing a set of equations for S(n, ) we need to pay special attention
to S(1, 1) and S(2, 2). The erythrocyte-erythrocyte reaction creates
two-cell, two-cap branches, and the erythrocyte-wall branch initiation
process creates one-cell, one-cap branches. Both types of branches are
lost through elongation. The cap-cap reaction, with rate k.a . MS(1, 1),
and the cap-wall reaction with rate k., WS(1, 1), each reduce the
concentration of one-cell, one-cap branches. These branches are created
only by the branch initiation process outlined above. Hence, we find

ds(1, 1)/dt = k. EW — k.a.ES(1, 1)

— k.aMS(1,1) — k, ,WS(1,1). (A2.1)

By similar reasoning, we note that two-cell, two-cap branches are
formed by the erythrocyte-erythrocyte reaction and lost by condensation.
The condensation terms occur with twice the reactivity of those in the
one-cap one-branch case, since condensation can occur on either cap of
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S(2, 2). Hence,
dS(2,2)/dt = l/zkeea,E2 — 2k.a.ES(2,2)

- 2kaMS(2,2) — 2k, ,WS(2,2). (A2.2)

It should be noted that S(1, 2) represents branches that do not exist,
and S(2, 1) are described by the general equations that follow.

The general equations for S(n, c) are best treated in three individual
cases: S(n, 0), S(n, 1), and S(n, 2). Each of these types of branches is
formed through elongation, and/or through specific forms of cap-cap and
cap-wall condensation. First, the concentration of doubly bound branches
S(n, 0) is unaffected by addition. The only way to form branches without
caps is to condense a cap from an S(n, 1) with a wall or with a cap from
another S(n, 1). Thus, one finds

dS(n, 0)/dt = ko, WS(n, 1)

+ hkoa, "isuc, DS(n = k, 1). (A2.3)
k=1

The factor of !» in the summed expression is a correction for the
duplication of terms in the sum as written.

Single-cap branches are created by the condensation of their caps with
other caps or with walls. Hence,

dS(n, 1)/dt = ka E[S(n — 1,1) — S(n, 1)]

n—1
+ 2kea, > S(k,2)S(n — k, 1)

k=2
— kea.MS(n, 1) + k., W[2S(n, 2)

— S(n, 1)]. (A2.4)
The factor of 2 in the summed term arises because S(k, 2) has two caps
and thus a double reactivity. The sum is asymmetric, so no double
counting occurs.

In a similar manner one can write the equation for branches with two

caps:
dS(n,2)/dt = 2k a. E[S(n — 1,2) — S(n, 2)]

n-2
+ 2k.a. D_S(k,2)S(n — k, 2)

k=2

— 2k,.a.MS(n,2) — 2k, WS(n,2). (A2.5)

The summed term has a factor of 2 which is the product of two factors of
2 (double reactivity on each reactant) and one factor of !4 (to correct for
double counting in the sum).

Equations for R(n, ¢) can also be written. Since R(2, 2) is the only
rouleau affected by the erythrocyte-erythrocyte reaction, we first
construct the equation for dR(2, 2)/d¢, and then find the general
equation for dR(n, c)/dt. A two-cap, two-cell rouleau R(2, 2) is formed
by the joining of two erythrocytes and removed by the elongation
reaction, by the cap-cap reaction or by cap-wall condensation. Hence we
find:

dR(2,2)/dt = ko a,E* — 2k.a.ER(2,2)

— 2k.a.MR(2,2) — 2k,,WR(2,2). (A2.6)

All reactions in Fig. 14 except for the erythrocyte-erythrocyte reaction,
contribute terms to the equations for R(n, c). Thus,
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dR(n, c)/dt = ck.a.E[R(n — 1,¢) — R(n, ¢)]
+ kWE[(n— 1)w + 2¢ — (c — Na JR(n — 1,c — 1)
— ko E[nw + 2e — ca.]R(n, c)
n-2 ¢
+ %kw > Y [d(c — d+2)a.)R(m, d)R(n — m, c—d + 2)
m=2 d=2
— kea.Mc R(n, c)

c—1 n-2

+ %kcwz > A(m,n,c,d)R(m,d)R(n — m,c—d + 1)

d=2 m=2

— ke R(n, c)[M(nw + 2e — ca.) + cW],

n=3,4,..., 2=<c=n, (A2.7)
where
A(m,n,c,d) = (c — d + 1)[mw + 2e — da_]
+d[(n—mw+ 2 —(c—d+ 1)a.]. (A2.8)

Eqs. A2.7 and A2.8 can be understood, term by term, as resulting from
the reactions already considered. The first three terms of Eq. A2.7
represent gain and loss of rouleaux by the elongation reaction, and by the
erythrocyte-wall reaction. The reactive wall area in a rouleau with n cells
and c caps is the total external area A(n) = nw + 2e minus the total cap
area, ca.. The fourth term of the equation represents the growth of
rouleaux due to cap-cap condensation, a reaction in which two caps are
lost. The summand is the product of the area available for cap-cap
condensation [da. R(m, d)], with the concentration of caps available for
condensation (¢ — d + 2)R(n — m, ¢ — d + 2). Since the summation
counts each term twice we divide by 2. The fifth term represents the loss
of rouleaux by the same process. The sixth and seventh terms are the gain
and loss (respectively) of rouleaux R(n, ¢) due to cap-wall condensation,
a reaction in which one cap is consumed. Since one rouleau with n cells
and ¢ caps is gained whenever R(m, d) and R(n —m, c —d + 1)
condense via a cap-wall reaction, the appropriate reaction term contains
their product times an area, A(n, m, ¢, d). The area term contains two
parts corresponding to the two ways in which the reaction may occur: the
number of caps on R(n — m, ¢ — d + 1) multiplied by the wall area of
R(m, d) plus the number of caps on R(m, d) multiplied by the wall area
of R(n — m, ¢ —d + 1). The summation double counts the reaction
terms leading to the inclusion of a factor of '5. The seventh term of the
equation also contains a similarly derived area factor.

The prototype equations for R(n, ¢) and S(n, ¢) contain areas that can
become negative if no restriction is placed on the relationship between n
and c. Obviously, we require the total area of any rouleau to be greater
than its cap area; i.e.,

nw + 2e > ca.. (A2.9)
Thus the allowed values for ¢ lie in the ranges
2=<c=n, (A2.10)
and
c < (nw + 2e)/a.. (A2.11)

APPENDIX III

Distribution of Segments with Zero, One,
or Two Caps
Without solving the full system of coupled equations for S(n, ¢) or
R(n, c), we can predict the concentration of segments with ¢ caps,

BIOPHYSICAL JOURNAL VOLUME 37 1981



irrespective of n. Let us define

S0) = i S(n, 0) (A3.1)
n=1
S() = i S(n, 1), (A3.2)
n=1
S(2) = i S(n, 2). (A3.3)
n=2
These are related to the variables M and S by the equations
S =S(0) + S(1) + S(), (A3.4)
and
M =2S8(2) + S(1). (A3.5)

Differential equations for these new variables can be found by
summing Eqs. A2.1-A2.5 derived in Appendix II:

dS(0)/dt = Yok.a.S(1)* + ke, WS(1), (A3.6)
ds(1)/dt = k., EW + 2k.a.S(1)S(2)
— ka MS(1) + k,,W[2S(2) — S(1)], (A3.7)

and
dS(2)/dt = l/zkeeacE2 + 2k°,_‘a‘,S(2)2
— 2k.aMS(Q2) — 2k, WS(2) (A3.8)

APPENDIX IV

Nondimensional Form of the Equations for
E. M, W,S,and R

Introducing the definitions

ke.a, ke w k.a, koW
k;c k, _ ew ,k;¢= c’k‘,:w _ cw ,
k a. k,ea, keeae keeae
E M w S R
E-e— M =-— W=—/8=— R=-—,
EO EO WEO Eo EO
t =k.a.Egt, (A4.1)
Eqgs. 46, 47 and 49-51 become
dE’'/df = —E”? — kI.M'E' — k[ E'W', (A4.2)
dM'/dr = E? + ki .E'W' — k,’,CM’2 - klL,M'W', (A4.3)
awjdr -2 "%  epn e+ X%k Ew
2% o T X mewe, (Ad4)
1
"= [w(l — E') + e — a )M’ — wW'], (A4.5)
R =M -§". (A4.6)
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The various mean quantities that describe the distribution are given by
1-FE' - E’ 1

n =——,\Nn)=——— n = —
( >|' Rl ( ) S < ) EI + R/

(&) = M and (b) =213 (aa7)

R
where (n),, (n), and (n),, are the mean lengths of a rouleau, a
segment, and a unit (single cell or aggregate) respectively. The quantities
(c) and <b) are the mean number of caps and branches per rouleau,
respectively.
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